
Content-Based Multicast: Comparison of Implementation Options

Ryan Huebsch

Report No. UCB/CSD-03-1229

February 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720



Content-Based Multicast: Comparison of Implementation
Options1

Ryan Huebsch

UC Berkeley
huebsch@cs.berkeley.edu

Abstract

This paper is an attempt to quantify the perfor-
mance differences for content-based multicast im-
plemented inside the overlay routing algorithm or
built on top of the simple API provided by the rout-
ing layer. We focus on overlay networks designed
for peer-to-peer distributed hash table (DHT) ap-
plications where content-based multicast is most
applicable. In particular we study the Content
Addressable Networks (CAN) and Chord routing
algorithms. It is our conjecture that similar re-
sults would be obtained through other protocols
such as Pastry and Tapestry.

We show that it is feasible and in some ways more
flexible to provide content-based multicast above
the routing layer with only a modest gain in la-
tency.

1 Introduction
Distributed hash tables (DHTs) can be used to distribute,
store and retrieve data among many nodes in a net-
work. A basic DHT provides only two simple primitives,
get(key) and put(key, value). Given a particular
key a DHT is able to retrieve the associated value from the
proper node. For some applications this is sufficient, i.e.
when the application knows the exact key(s) for the item(s)
it needs. However, another set of applications [8, 10] re-
quire greater search capabilities. More complex queries
such as range or relational (SQL-like) queries are difficult,
if not impossible, to perform over a basic DHT with just
two primitives.

These enhanced queries usually require broadcasting or
flooding a request to a group of nodes in the network, which
can be inefficient when only using the put and get prim-
itives. The group of nodes to be contacted is based on the
keys they are responsible for storing. In order to provide
increased performance for applications that require partial

1This research was funded in part by NSF/IRIS (http://
project-iris.net/) project Cooperative Agreement No. ANI-
0225660 and in part by a NSF Information and Intelligent Systems grant
No. IIS-0209108.

flooding of the content space, an efficient multicast func-
tion should be provided.

A DHT is composed of multiple components which
are connected through standard interfaces. It is important
to consider where specific functionality should be imple-
mented in a layered system. Adding functionality to core
components often makes them more complicated, prone to
bugs, and may decrease efficiency for more common tasks.
In the network community, the end-to-end argument [13] is
often used as design principle that argues for pushing most
functionality higher in the protocol stack unless it can be
correctly (and significantly more efficiently) implemented
at the lower level.

This paper is an attempt to quantify the performance dif-
ferences for content-based multicast implemented in two
different layers of the DHT. We use Content Addressable
Networks (CAN) [11] and Chord [14] as the routing al-
gorithm for the DHT. It is our conjecture that similar re-
sults would be obtained through other protocols such as
Pastry [6] and Tapestry [15].

We discuss related work in Section 2, followed by the
general architecture in Section 3. Section 4 explains the
details of the algorithms we have implemented. Section 5
evaluates the performance differences and we conclude the
paper in Section 6.

2 Related Work
Multicast was first introduced as an IP-based solution [5].
Several research projects [3, 4, 7, 9] have argued instead for
application level multicast as a more practical alternative to
IP multicast, citing the end-to-end argument. One example
is Narada [1], which is an overlay network that provides
small-scale multicast groups. End systems in Narada self-
organize into an efficient mesh structure using a distributed
protocol. Source rooted shortest delay spanning trees are
then explicitly constructed for the end hosts within a mul-
ticast group. As a result of using global routing and tree
formation algorithms, systems like Narada do not scale be-
yond hundreds of nodes nor do they operate efficiently un-
der dynamic conditions.

To ensure better scalability and handling of dynamic
groups and network failures, application level multicast
has been implemented using peer-to-peer routing algo-



Storage
Manager

Overlay Network Provider (ONP)

Overlay Routing

User Application

Network

Figure 1: The system model is composed of four components,
the user application which interfaces the with overlay network
provider (ONP). The ONP manages the storage manager and lo-
cates other ONPs through key lookups using routing layer.

rithms. For example, Bayeux [16] is implemented on top of
Tapestry, and organizes multicast receivers into a distribu-
tion tree routed at the source. In Bayeux, nodes explicitly
join and leave a multicast session by notifying the source
node. The service model is limited to a single source.

An alternative to Bayuex has been proposed in [12], in
which multicast facilities are provided within the routing
layer itself. In this proposed solution (called CAN-based
multicast), a multicast group forms a ”mini” CAN that is
reachable from a bootstrapping node in the underlying base
CAN. Multicast is then achieved within this mini CAN via
directed flooding. Unlike Bayeux, CAN-based multicast
does not restrict the service model to a single source.

A major difference between our system, and the above
multicast solutions are that our multicast membership is
content-based rather than enrollment based. In our service
model, group members are implicitly subscribed to a mul-
ticast group determined by the content (keys) that they are
responsible for storing. The group is sender specified, but
the sender does not know which specific nodes will receive
the message. This is in contrast to other content-based mul-
ticast such as [1, 2] which are based on publish-subscribe
model, in which receivers subscribe to multicast groups as
determined by content publishers, and receive event notifi-
cations whenever the subscribed content changes.

The main contribution of this paper is to evaluate
content-based multicast implementations at two different
layers: inside the routing algorithm (such as CAN-based
multicast) and on top of the routing layer (such as Bayeux).

3 Architecture
Our architecture is based on a design with three main com-
ponents as shown in Figure 1. In this model the overlay
network provider (ONP), routing layer, and the (non per-
sistent) storage manager are commonly grouped together
and called a DHT. We focus on the interaction between
two components, the ONP and the routing layer. For the
purpose of this investigation, storage is ignored and the ap-
plication can be any user-level application that requires a
multicast primitive.

In this model the ONP provides a number of functions

to a user application, including put and get which insert
and retrieve data items from the network. The routing layer
provides a simple lookup function to determine which
node is responsible for a particular key. Once the routing
algorithm determines the proper node, the ONP is able to
directly contact the corresponding ONP on the other node
and transfer the data accordingly.

Although the routing layer only provides a simple prim-
itive, it is responsible for maintaining a number of impor-
tant properties including load balancing and recovery from
faults. Routing algorithms have been designed for peer to
peer DHT based networks including [11, 14, 6, 15].

Data in the overlay network is uniquely identified by
two values, a namespace and resource identifier. These
two values are transformed into a location identifier by the
ONP using a well-known function (usually a hashing func-
tion). The location identifier is the search key used with
the routing layer. We address the class of functions where
the high order bits of the location identifier are based solely
on the namespace, while the lower order bits are based on
resource identifier (and possibly the namespace as well).
This allows data within the same namespace to be assigned
to nodes that are close in the logical space (and possibly
physically close depending on the routing layer).

The multicast primitive we wish to provide is designed
to deliver a message (data) to all nodes in the network that
are responsible for some group of content. The group of
content is comprised of all the data in a particular names-
pace. Thus, the multicast message is designed to go to all
nodes that are responsible for a particular prefix of location
identifiers. It is expected that nodes will usually only send
one message at a time (as opposed to streaming data over a
period of time) and that any node in the system may send a
message to any multicast group.

A multicast message contains the location prefix (corre-
sponding to the namespace), mask, and a payload, which
is the data to be delivered to each node. Using the prefix
and mask, the lower and upper bounds of the location iden-
tifier space can be determined; this range is referred to as
the multicast range.

Unlike many multicast service models, nodes do not
specifically join a multicast group, instead a message is au-
tomatically delivered to all nodes in the group.

4 Multicast Algorithms
We examine multicast using two different routing algo-
rithms CAN and Chord. We have implemented two ver-
sions of multicast in CAN and two versions in Chord. We
then compare these routing layer implementations with a
general ONP level multicast, which works on top both rout-
ing algorithms (and in general, it will work on top of any
routing algorithm).

4.1 CAN Multicast

CAN maps location identifiers to a point in d-dimensional
space, where d is a system-wide parameter. The logical
space wraps around the edges to create a torus (continuous
space).



Each node in CAN is responsible for a zone or region of
the logical space. Every node maintains a pointer for each
of its neighbors in the logical space. On average each node
has 2d neighbors, although uneven partitioning of the space
can result in fewer or more neighbors for some nodes.

A message is routed through the logical space by using
a greedy algorithm. A node will forward the message to
whichever neighbor is closest based on Euclidean distance
in the logical space. On average d

4n
1
d hops are required

(where n is the number of nodes in the system) for a mes-
sage to reach its destination.

A multicast message is sent to a multicast zone, de-
scribed by two coordinates (the lower and upper bounds
of the multicast range), in the logical space where all iden-
tifiers of interest are mapped. This zone can intersect one
or more nodes.

Flooding of the multicast message begins by the mes-
sage being delivered to any node in the multicast zone. This
can be achieved by issuing a lookup for a random identi-
fier within the multicast range. Our system uses the lower
bound of the multicast range as the starting point.

The first multicast method implemented is the naı̈ve al-
gorithm. For this algorithm, each node iterates through its
neighbors and decides whether to forward the message if
the following conditions are met:

1. The neighbor is not the same node that the message
came from on the previous hop.

2. The neighbor’s zone intersects with the multicast zone

Each node also maintains a list of messages that it has
previously received and forwarded. Messages are only for-
warded the first time they are received. If this list was lost,
due to a failure or error, the correctness would not be af-
fected, however extra messages could be generated.

The second method, referred to as smart (compared to
the naı̈ve algorithm), is described in [12] where it was first
introduced as directed flooding. It follows the same basic
rules as the naı̈ve method but adds two additional condi-
tions:

1. If the message arrived from a node that abuts this node
in the ith dimension, then the message is only for-
warded to neighbors who abut on dimensions less than
i or in the opposite direction (in dimension i) than
from where it was received.

2. The message is not forwarded along a particular di-
mension if it has traveled more than halfway around
the total logical space (not just the multicast zone) in
that dimension from the source node.

Figure 2 shows how a sample smart multicast is dissem-
inated.

The smart algorithm is designed to predict whether an-
other node is responsible for sending the multicast mes-
sage to a particular neighbor based on the direction the
multicast message is traveling. Using the smart algorithm,
nodes should only receive duplicate messages when the

Figure 2: Smart multicast in CAN. The dot represents the start-
ing node.

logical space is not divided evenly among the nodes. The
naı̈ve method, only prevents forwarding the message to the
neighbor it was received from. This means that using the
naı̈ve method, nodes (in the worst case) could receive a
multicast from each of their neighbors.

Both algorithms forward messages only to logical
neighbors, which correspond to one logical hop. This pro-
vides the maximum efficiency for routing in the overlay
network. On average the multicast message could reach all
nodes in the group after d

4n
1
d hops.

In a peer-to-peer environment, robustness is an impor-
tant property. Neither algorithm is particularly designed
for robustness. The naı̈ve algorithm sends more duplicate
messages, therefore the likelihood that at least one of the
messages reaches each node is higher than the smart algo-
rithm, increasing the robustness of the naı̈ve algorithm.

4.2 Chord Multicast

Chord’s routing mechanism is based on a circle (or a one-
dimension logical space). Each node in the network is as-
signed a point on the circle (also known as its id) and is
responsible for any keys that map to the portion of circle
before it’s id and after the previous node’s id (usually vi-
sualized as the arc going counter-clockwise around the cir-
cle). Routing can be achieved as long as each node knows
its predecessor and successor on the circle. For efficiency
each node also maintains pointers (known as a fingers) to
nodes throughout the circle. A finger is maintained for the
node responsible for id+2i, for each i such that 0 < i < m
and m is the number of bits used to specify an identifier.

A message is routed through the system in either an it-
erative or recursive style. In the iterative style, a node will
contact the node with the highest preceding value (com-
pared to the target location identifier) within its finger table.
That node will either accept the message (if it is responsi-
ble for the target location identifier) or return the message
with its best guess of the predecessor based on its finger
table. The process repeats till the proper successor node
is located. The recursive style is similar except that the
intermediate nodes contact the next node directly instead
of sending contact information back to the initiator. The



0

2

6

10

11

13

1618

20

22

24

26

28

Figure 3: Smart multicast in Chord. Solid lines represent mes-
sages sent by the first node, dashed lines show messages sent by
those nodes, and finally the dotted lines show the final messages
sent. Fingers along which no message was sent are not shown for
clarity. Node 0 forwards the message to nodes 2, 6, 13, and 24.
Node 6 only forwards the message to nodes that lie from 6 to 13.

recursive style reduces latency by about one half over the
iterative style. On average a message requires log(n) hops
in the overlay network.

A multicast message in Chord is disseminated in a sim-
ilar fashion as is done in CAN. The message is first sent
to the node at the lower bound of the multicast range. The
naı̈ve method will forward the message to every finger in
the node’s finger table, including the successor that lies in
the multicast range. A list of each message forwarded is
kept to prevent a node from re-forwarding the same mes-
sage.

An improved forwarding algorithm, called smart, also
sends the message to each node in the finger table, but ad-
justs the range of multicast before sending to limit the num-
ber of duplicate messages. The lower bound of the range is
set the remote node’s identifier. The upper bound is set to
the minimum of the identifier of the next local finger and
the multicast range. In effect, the node partitions the mul-
ticast range among its fingers. Figure 3 shows an example
of the smart distribution.

The same tradeoffs are made with the Chord multicast
algorithms as are made with the CAN multicast algorithms.
The smart multicast method reduces the total number of
messages sent but sacrifices robustness if there are failures
or losses. In the average case, in the naı̈ve method a node
receives the message from each node that has a finger to
that node, or approximately log n messages. The smart
algorithm is designed to produce no duplicate messages
since the logical space is partitioned into non-overlapping
ranges. The time for distribution is the same for both algo-
rithms and is approximately log n.

4.3 ONP Multicast

The ONP level algorithm is based on a simple spanning
tree method, although no tree is explicitly created or saved
between messages.

The algorithm will work for any routing algorithm that
satisfies one property with respect to the mapping of loca-
tion identifiers: for any location identifier bit prefix, if the
lower bound of the prefix and the upper bound of the pre-
fix map to the same node, so will all identifiers in between.
This is not as strict as a requirement saying any continuous
range must map to the same node. Since the range is spec-
ified as a bit prefix, the bounds of the prefix are powers of
two as opposed to any arbitrary value.

Chord naturally satisfies this property since each node
has a continuous range (or arc) along the circle. CAN
also guarantees this property for any number of dimensions
since a zone is defined using a bit prefix.

As with the routing layer level multicast algorithms, the
message is first delivered to a node within the multicast
range. This node is the root of the tree and processes the
message like any other node.

The node creates two messages, one with location pre-
fix extended with a 0 (on the right leaving the high order
bits the same), and one message with the location prefix
extended with a 1. The mask for each of the messages is
reduced by one bit. Figure 4 shows this process for the last
two rounds of communication.

Each of the messages is then forwarded to the node that
is responsible for the key at the lower end of the new (re-
duced) range. If the current node is responsible for the
lower bound location identifier, then the upper bound lo-
cation identifier is tested to see if that value is also local. If
both values are local, a leaf on the tree has been reached,
and the message is discarded. Otherwise the message is
processed locally following the same process.

A multicast message will be recursively processed by
nodes as the mask is reduced until the base case is reached
when the mask is empty and all possible prefixes have been
tested or a leaf is reached. Descending to the bottom of the
tree should rarely occur since the tree should be relatively
sparse (there are more location identifiers than nodes).

The method as described creates a binary spanning tree.
A quad or higher degree tree could also be created. Instead
of creating two messages and reducing the mask by one bit,
the mask can be reduced by more than one bit at each level.
The number of messages created at each node becomes 2x

where x is the number of bits removed from the mask.
Because messages are always sent to the low end of the

range at each level, the leftmost child is the same node as
the parent. In this case, only the high end of the range needs
to be checked to determine if the node is a leaf.

The binary tree will have a maximum height of m,
where m is the number of bits in the identifier. Consider
the case when the routing algorithm maps a single contin-
uous region of the identifier space to a node (as is the case
with CAN and Chord), then each node may only appear
twice at each level unless it is a leaf. This bounds the worst



A B

A A B C

A

Prefix: 01xx
Mask: 1100

Prefix: 010x
Mask: 1110

Prefix: 011x
Mask: 1110

Prefix: 0110
Mask: 1111

Prefix: 0111
Mask: 1111

Prefix: 0101
Mask: 1111

Prefix: 0100
Mask: 1111

Level 0

Level 1

Level 2

Figure 4: ONP multicast. The message arrives at node A at level 0. At level 1 on the left side of the tree, node A will detect it has
reached a leaf, since both its children map to itself.

case fan-out at 2m (two messages per level), and the worst
case number of duplicates is also 2m (up to two messages
per level). Nodes that receive messages from themselves
(they are their own parent) do not count as duplicate mes-
sages since these messages were never transmitted over the
network.

The worst case time for dissemination is m times the
cost of the average lookup. In the average case, the lookup
only requires one hop for each level since the parent and
child are usually close in the identifier space. On average
the tree will only have log n levels.

Higher degree trees should increase the speed at which
the message is disseminated (since there are fewer levels in
the tree); however it also increases the fan-out since each
node has more children. Higher degree trees are also likely
to produce more duplicate messages. At each level the
range for the multicast is divided into smaller ranges. It
becomes more likely that two or more of these ranges will
map to the same node since the ranges are smaller and the
tree should be relatively sparse.

5 Experimental Results
A number of metrics are used to evaluate the multicast
methods. The primary metric is the relative delay penalty
(RDP). RDP is defined as ratio of the actual delay before
a node receives the message and the unicast delay if the
source sends the message directly to the recipient on the
physical network. The RDP shows the relative speed of the
multicast message dissemination

In conventional IP multicast, each node has a RDP of
1, since it is the most efficient distribution and follows the
unicast path. Overlay networks generally introduce much
higher RDPs since neighbors in the overlay network are not
necessarily neighbors in the physical network.

The 50% RDP represents the RDP of the median, or the
RDP after 50% of the nodes have received the message.
Likewise, 90% RDP represents the RDP after 90% of the
nodes have received the message.

The average number of multicasts received by each node
is also considered to see how effective each algorithm is in
preventing duplicate delivery.

Figure 5: 50% RPD with CAN at various dimensions.

All of our experiments were conducted using a discrete
event simulator. The simulator was setup with a basic star
topology network. Every node is assigned a half latency
and bandwidth. When communicating with another node,
the latency of the communication is the sum of the two half
latencies. The bandwidth of the communication is the min-
imum of the two nodes.

For all of our experiments each node has a half latency
of 100 ms and a bandwidth of 64 KBps. This results in a
200 ms latency and 64 KBps connection between any two
nodes. All flows use UDP with no packet loss. This simple
network allows the algorithms to be easily analyzed.

For each test, nodes join the network one after the other
with a small delay between joins (500 ms). Each node uses
the first node as the landmark to bootstrap into the network.
The system is run with no queries, joins, or leaves till the
system stabilizes. Experiments using Chord used the itera-
tive style for lookups.

The first set of tests focused on the setting the number
of dimensions used for CAN when using the ONP binary-
tree multicast. CAN was tested with two through six di-
mensions with network sizes starting at 256 nodes through
8192 nodes. Figures 5-7 shows the results.



Figure 6: 90% RPD with CAN at various dimensions.

Figure 7: Number of duplicate messages with CAN at various
dimensions.

Figure 8: 50% RPD with ONP multicast with varying degree
trees.

Figure 9: Number of duplicate messages with ONP multicast
with varying degree trees.

As the number of dimensions increases, the average path
length decreases which corresponds to the decrease in the
50% RDP. The 90% RDP shows the same trend. The av-
erage number of messages is slightly higher (more dupli-
cates) with more dimensions. The differences diminish
slightly as the size of the network increases. For the re-
maining tests, the dimensionality of CAN is set to four.

The second set of tests (Figures 8-9) examines the ef-
fect of degree of the ONP spanning tree. In this experiment
the network size goes up to 16384 nodes. Binary, quad-,
and oct-trees are graphed. The 50% RDP graph shows that
the higher degree trees are able to disseminate the message
faster and scale better with larger systems. The 90% RDP
shows the same trends and is not shown. With higher de-
gree trees the average number of messages received also
increases, leading to poor use of network resources.

The next set of tests (Figures 10-12) compares the dif-
ferent multicast methods. The 50% and 90% RDP graphs
show that the naı̈ve method is slightly faster than the smart
multicast. The ONP binary-tree multicast is about twice as



Figure 10: 50% RPD with CAN and ONP multicast implemen-
tations.

Figure 11: 90% RPD with CAN and ONP multicast implemen-
tations.

Figure 12: Number of duplicate messages with CAN and ONP
multicast implementations.

Figure 13: 50% RPD with varying multicast distribution sizes.

Figure 14: Number of duplicate messages with varying multicast
distribution sizes.

slow. The oct-tree approaches the performance of the na-
tive CAN algorithms. The data also shows that the ONP
binary-tree multicast delivers only one message per node,
slightly better than the smart and oct-tree methods. The
naı̈ve method, as expected, produces a large number of av-
erage messages received per node.

The final set of tests with CAN (Figures 13-14) shows
how the various multicast algorithms perform with varying
size multicast groups. The number of nodes in the system
is fixed at 8192. Along the x-axis is the size of the group
(represented as 1

2x ).
As the group becomes smaller, the ONP binary-tree

multicast is able to achieve a linear decrease in RDP. The
CAN multicast algorithms improve with smaller groups,
but not significantly. This is due to the fact that CAN mul-
ticast methods can only follow neighbors and as the group
size decreases the message can only be routed to some
neighbors. For the naı̈ve algorithm this has the positive
side effect of reducing the number of duplicates.

A comparison of the various multicast algorithms in
Chord is shown in Figures 15-17. Similar to the CAN re-



Figure 15: 50% RPD with Chord and ONP multicast implemen-
tations.

Figure 16: 90% RPD with Chord and ONP multicast implemen-
tations.

Figure 17: Number of duplicate messages with Chord and ONP
multicast implementations.

sults, the ONP binary-tree multicast is about twice as slow
as the native Chord algorithms. This is primarily due to the
cost of the ONP issuing the lookups through Chord rather
than being able to directly transfer the data to the nodes.
The naı̈ve and smart algorithms distributed the multicast at
about the same pace.

The naı̈ve Chord algorithm generated a significant num-
ber of duplicates. This is due to the fact that the message
is forwarded to all fingers without partitioning the logical
space among them. Again, both the smart Chord algorithm
and ONP binary-tree multicast both achieved near perfect
distribution producing few duplicates.

6 Conclusion
The various multicast methods performed as expected re-
sulting in the traditional tradeoff. By moving the multicast
function lower in the stack, a substantial performance ben-
efit is realized. However this adds additional complexity to
the routing layer. The same tradeoff is made between IP
Multicast and application level multicast implementations.

An important result from the tests is to realize that a
general ONP level multicast is feasible and can perform
reasonably well. The ONP multicast is able to keep the
number of duplicates very low, usually better than rout-
ing layer level multicasts. The ONP multicast also has the
added ability to make the tradeoff between fast distribu-
tion and number of duplicate messages. This tradeoff can
be made on a message-by-message basis by the user appli-
cation. This shows the added flexibility of an ONP level
implementation.

For applications that require very high performance
multicast, implementation at the lower level is better. How-
ever to provide a general multicast on top of many different
routing algorithms, the ONP multicast is a fair compromise
and should be considered a viable alternative for most sys-
tems.

7 Acknowledgements
Our thanks to Ion Stoica, Boon Thau Loo, Scott Shenker,
and Joe Hellerstein for their input and support of this
project. We would also like to thank Sylvia Ratnasamy for
assistance with CAN.

References
[1] G. Banavar, M. Chandra, B. Nagarajaro, R. Strom, and C. Sturman.

An efficient multicast protocol for content-based publish-subscribe
systems. In Proceedings of ICDCS, 1998.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scribe:
A large-scale and decentralized publish-subscribe infrastructure,
2001.

[3] Y. Chawathe, S. McCane, and E. Brewer. An architecture for internet
content distribution as an infrastructure service, Feb. 2000.

[4] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multi-
cast. In Proceedings of ACM SIGMETRICS, Santa Clara, CA, June
2000.

[5] S. Deering and D. Cheriton. Multicast routing in internetworks and
extended lans. In Proceedings of ACM SIGCOMM, 1998.

[6] P. Druschel and A. Rowstron. Past: Persistent and anonymous stor-
age in a peer-to-peer networking environment. In Proceedings of the
8th IEEE Workshop on Hot Topics in Operating Systems, 2001.



[7] P. Francis. Yoid: Extending the internet multicast architecture, 2000.

[8] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and
I. Stoica. Complex queries in dht-based peer-to-peer networks. In
Proceedings of 1st International Workshop on Peer-to-Peer Systems,
Cambridge, USA, Mar. 2002.

[9] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole, Jr. Overcast: Reliable multicasting with an overlay net-
work. In In Proceedings of OSDI, 2000.

[10] J. Li, B. T. Loo, J. Hellerstein, F. Kaasheok, D. Karger, and R. Mor-
ris. On the Feasibilty of Peer-to-Peer Web Indexing and Search.
In Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03), Feb 2003.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content addressable network. In Proceedings of ACM SIG-
COMM, 2001.

[12] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-
level multicast using content-addressable networks. Lecture Notes
in Computer Science, 2233, 2001.

[13] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 2(4), Nov.
1984.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions. In Proceedings of ACM SIGCOMM, 2001.

[15] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Tech-
nical Report UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

[16] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz.
Bayeux: An architecture for scalable and fault-tolerant widearea
data dissemination, 2001.


