PIER on PlanetLab: Initial Experience and Open Problems

Ryan Huebsch, Brent Chun, and Joseph M Hellerstein

IRB-TR-03-043

November, 2003

DISCLAIMER: THIS DOCUMENT IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. INTEL AND
THE AUTHORS OF THIS DOCUMENT DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY
PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS DOCUMENT. THE
PROVISION OF THIS DOCUMENT TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

IntelFle..c'.earch
Copyright 2003, Intel Corporation, All rights reserved. Berkeley

PIER on PlanetL ab: Initial Experience and Open Problems

Ryan Huebsch
Univ. of California, Berkeley
huebsch@cs.berkeley.edu

Abstract

In this paper we describe our initial experiences with
deploying and running PIER, a distributed query pro-
cessor, on 200 nodes of the PlanetLab network testbed.
Through use cases, we show that PIER is flexible and
can easily incorporate new data sources without a pri-
ori knowledge of their schemas. We highlight of num-
ber of important features in PIER used in our use cases,
including in-network aggregation. Finally, we discuss
open problems that are raised by our work to date.

1 Introduction

PIER (which stands for “Peer-to-Peer Information Ex-
change and Retrieval”) is a distributed query proces-
sor that is designed to scale to thousands or millions
of nodes. PIER uses a Distributed Hash Table (DHT)
as its communication substrate to help achieve scala-
bility and reliability without sacrificing autonomy or
efficiency. Although PIER is capable of serving as a
generic dataflow engine, we have outfitted PIER with a
library of mostly relational operators, which are based
on standard database query executors. We feel that re-
lational query processing is sufficiently expressive for
many applications, and optimization of relational ex-
pressions has been well studied. PIER is extensible,
allowing users to execute their own operators if the
built-in library is not sufficient for a particular appli-
cation. We refer the reader to a more complete de-
scription of PIER in [2].

This paper focuses mainly on our initial experiences
running PIER on the PlanetLab [4] network testbed.
As expected, during deployment on PlanetLab we ran
into a number of unexpected obstacles. We show
data collected on PlanetLab which illustrates both that
PIER is working, and that its deployment raises inter-
esting issues. Although PlanetLab is relatively small
compared to our goal of scaling to millions of nodes,

Brent N. Chun
Intel Research Berkeley
bnc@intel-research.net

Joseph M. Hellerstein
Univ. of California, Berkeley
jmh@cs.berkeley.edu

it presents a useful testbed for exploring the feasibility
and challenges of a system like PIER.

2 PlanetLab Examples

Large-scale federated systems such as PlanetLab
present a number of system management and oper-
ational challenges, many of which are amenable to
distributed query processing. Network services need
the ability to discover computational and networking
resources of interest in a timely and reliable man-
ner. Global system monitoring is needed to track re-
source usage in the system and to identify components
that have failed. Finally, distributed anomaly detec-
tion may be desirable both to detect incoming attacks
against the infrastructure and to detect misuse of fed-
erated resources by users (e.g., launching a DDoS at-
tack). While centralized solutions are effective at tack-
ling these problems on a moderate scale, we believe
that distributed query systems like PIER will prove to
be a more robust and scalable solution as federated
systems grow to thousands of nodes spread across the
wide-area.

2.1 Resource Discovery

Resource discovery is the process of binding an ab-
stract specification of resources to a set of physical
resources matching that specification. In PlanetLab,
the common case for resource discovery is identify-
ing a set of nodes on which to deploy a network ser-
vice or experiment. In cluster-based systems, resource
discovery for applications typically involves finding a
set of machines with some minimum resource capac-
ity (e.g., CPU speed) or finding a set of least loaded
machines. In a system like PlanetLab, which targets
broad-coverage network services, the set of requests
is more diverse. Other examples include finding a
set of nodes at geographically distinct locations, find-
ing pairs of nodes with multiple A.S.-disjoint network

paths, and finding a set of nodes which have low fail-
ure correlation.

The diversity of resource discovery requests in Plan-
etLab implies that no predefined schema will be suf-
ficient to meet all requests since all needs cannot be
anticipated a priori. PlanetLab sensors [6] are simple
daemons that export arbitrary information in a stan-
dardized way via HTTP. Given sensors that export re-
source discovery information, for example, PIER is
then able to automatically tap in to these sensors to
execute higher level queries on the underlying data.
A good example of a resource discovery sensor is
gangl i a- proxy. This sensor exports static node
configuration information as well as per-node resource
statistics (e.g., CPU load). Should more complex
needs arise, all that is required is writing and deploy-
ing a new sensor. Such sensors immediately become
available for querying by PIER.

2.2 System Monitoring

A second challenge in managing a large-scale feder-
ated system is system monitoring. Here, system ad-
ministrators need the ability to quickly ascertain the
global state of the system and identify problematic
components (e.g., nodes, network paths, etc.) that
require attention. For example, a recent kernel bug
caused one user to have approximately 300,000 zom-
bie processes across all of PlanetLab. The system
should allow such anomalous events to be quickly
identified. Towards this end, PlanetLab currently runs
a number of sensors on each node that export a rich
set of per-node statistics. Currently these include
the following: sl i cestat (per-slice! CPU, mem-
ory, network bandwidth, and thread count statistics)
net f | ow (per-slice IP flow statistics, e.g., source
and destination addresses/ports as well as byte and
packet counts), and scout - noni t or (per-slice byte
counts). Again, note that the information used to per-
form effective system monitoring can evolve over time
without requiring any changes to PIER whatsoever.

2.3 Distributed Anomaly Detection

Finally, a third challenge for federated systems is
anomaly detection. Just as high profile Internet ser-

1A slice is a fundamental abstraction on PlanetLab. It com-
prises a network of virtual machines, each of which is bound to
some set of local resources. Each network service on PlanetLab is
deployed in its own slice.

vices are probed and attacked with alarmingly regu-
larity, so will large-scale federated testbeds once they
reach a critical mass of visibility and utility. Fur-
ther, given the widespread coverage of these systems,
the potential damage that can be caused by a legit-
imate distributed program gone awry also increases
substantially. Thus, it is advantageous for systems
to contain some automatic distributed anomaly de-
tection both for outgoing and incoming traffic. To-
wards this end, PlanetLab currently offers several sen-
sors which can assist in anomaly detection queries.
These include net f | ow and scout - noni t or as
described previously, as well as snort sensor, a
sensor server interface to the Snort [5] intrusion de-
tection system. Given the above, distributed anomaly
detection then might proceed by continuously running
aggregate queries over, say, the number of unique des-
tination IP addresses and drilling down with more spe-
cific queries to identify the misbehaving slice.

3 Continuous In-Network Aggrega-
tion

Aggregation is one of the most commonly used opera-
tors in system monitoring type applications. Users are
generally interested in summations, maxima, or aver-
ages when querying PlanetLab. This is not coinciden-
tal. Because of the enormous amount of raw data, ag-
gregation is extremely important in helping users de-
termine where interesting events are occurring and the
magnitude of the event. Following that, users are more
likely to issue specific ’drill down’ queries to deter-
mine exact causes and view detailed information.

Aggregation is both a common operation and one
that involves coordinating data from all over the net-
work. Hence we have implemented in-network aggre-
gation in PIER for enhanced efficiency of this impor-
tant task. To perform in-network aggregation, we first
define a root node for the aggregation by randomly se-
lecting a key in the DHT key space. The node respon-
sible for that key will produce the result tuples and for-
ward them to the requester.

The query is disseminated to every node that has
base data (often every node in the system). Those
nodes then read the raw data from the local access
method and route a message via the DHT to the root
node. Since the root is defined by a key, nodes are
not aware of which node is actually responsible for

the root. This allows the DHT to seamlessly adjust
the root based on changes in the underlying network
or node membership. Because nodes route data to the
root via the DHT (as opposed to direct IP), PIER is
able to intercept each message at each hop along the
path to the root. When multiple nodes route along the
DHT topology to a single root, the result is a (usu-
ally reasonably well-balanced) tree of communication
along DHT edges.

At each hop, the message is passed up from the
DHT layer to the query processor, which will hold the
message and wait for additional messages from other
nodes. After a predetermined timeout, the node ag-
gregates all the messages it has received and sends
the new partial aggregate (e.g. a running count and
sum for an average query) to the next hop. Eventually
the hierarchically aggregated data will reach the root
where it will be aggregated with data from the rest of
the network.

Because we wish to perform a continuous aggre-
gate, each node will periodically rescan the access
method and send a new message toward the root. It
now becomes important to ensure that only the lat-
est data is used to calculate the current aggregate; old,
stale data should be removed from the calculation. On
the other hand, if a node is unresponsive for a short pe-
riod of time, we would like to use its last known value
as a substitute for the current unknown value. To do
this we cache raw data and partial results at each node
along the path to the root. When a new value is re-
ceived, the cache will replace the old value. If a new
value is not received with in a pre-determined timeout,
the stale value is removed from the cache. The nodes
now generate partial results using data that exists in the
cache.

This method is very similar to soft-state mainte-
nance of data. Soft-state requires the periodic renewal
of data in order to compensate for failures. Our prob-
lem is slightly different in that the aggregate compu-
tations depend on the soft state being stored or used
exactly once — duplicate copies will often produce an
incorrect answer, whereas in many traditional uses of
soft-state that is not an issue. Second we expect the
data to change over time, so updates serve not only to
renew data, but to update it as well. This means that
the interval between updates is data-dependent, rather
than simply time-dependent.

A number of inconsistencies could occur with this

method. First, data used to produce a result aggregate
may have been collected at different times. We be-
lieve that for most applications this will be sufficient.
If stronger semantics are required, an epoch number
could be tagged to the partial results. This is very sim-
ilar to the way aggregation in sensor network was done
in [3].

A second problem exists when a path to the root
changes during execution. In this case two nodes may
be counting data received from a child in the tree. One
node, the previous parent, will be including cached
data till it expires, and the new parent will be receiving
fresh data. This creates a trade off in the accuracy of
the result and the resilience to temporary communica-
tion failures.

We are currently engaged in improving our aggrega-
tion, which includes work on understanding the struc-
ture of the tree, resilience to failures, and increased
efficiency.

4 Experiences and Open Problems

PIER was written completely in Java. The code base
has approximately 11,000 lines of PIER code and 4500
lines of supporting code (excluding the DHT). For net-
work communication we use an asynchronous UDP
protocol with acknowledgments and retries similar to
TCP however there is no connection setup overhead.

We use Bamboo for the DHT layer [1]. Bamboo is
a relatively new DHT that is designed to be extremely
reliable, especially in situations of high node churn.
PIER’s architecture is designed to be DHT-agnostic,
and in the past has run over Chord and CAN as well as
Bamboo. We expect that there are performance trade
offs between the various DHT algorithms, a topic we
hop to explore in future work.

4.1 Simple Queries

To perform our experiments, we deployed PIER on
approximately 210 nodes on PlanetLab. These were
all the nodes we could access at the time we ran our
tests excluding the nodes only connected on Internet2.
Nodes only on Internet2 can only communicate with
other nodes on Internet2. However, there are substan-
tial number of nodes on PlanetLab only on the com-
modity Internet.

We started by running a simple test query. On ev-
ery node executing the query a tuple containing the IP
address of the machine is generated and sent directly

to the node issuing the query (not a PlanetLab node).
It takes approximately 15 seconds for the query to dis-
seminate to all nodes and the responses to be received.

During query dissemination we noticed an usually
high amount of network traffic. This was due to a bug
in our query dissemination code, however as the time
we wrote this paper the bug had not been located. We
believe that once this bug is located, the time to exe-
cute the query will be faster.

After running several other queries we noticed that
not every node was processing the query. We went
back to our simple query used above, except this time
the query’s physical network payload was enlarged.
We noticed that this version of the simple query also
suffered poor recall. After further testing it was con-
cluded that queries larger than 1200 bytes (exclud-
ing some message overheads) were not being received
by all nodes. We suspect this due to the query mes-
sage being fragmented by IP and then being dropped
by some nodes (or probably firewalls in front of those
nodes).

Even if only a few nodes are unable to process these
packets more nodes will be transitively affected by the
DHT overlay, which will try to route messages through
the unfriendly nodes. This would explain the drop
from 210 responding nodes to 142.

4.2

Our next goal was to run a simple continuous in-
network aggregation query. For this we generated the
same one tuple per node as above and had PIER ag-
gregate the count of those tuples in the network using
the method described earlier. Figure 1 shows the count
reported by PIER with respect to time for a 15 minute
period.

It takes PIER about twenty seconds till the result
is nearly correct. Other systems currently used on on
PlanetLab for similar monitoring take on the order of
minutes to produce the same results. The curve is not
smooth due to the DHT adjusting its routing tables.
Recall that the aggregation algorithm routes a message
via the DHT toward a root key. As it is aggregated
along that path, the value is cached for a short period
of time in case the next message is delayed. How-
ever when the route changes, the value will be simul-
taneously counted by two nodes till the value expires
from the cache. Because the DHT is sensitive to small
changes in latency, this route flapping could result in

In-network Aggregation Queries

300

280

260

240

220

200

180

Number of Nodes Reported

160

140

120

100

0 200 400 600 800
Time (seconds)

Figure 1: Continuous Count of Nodes

1200 A
1000

A
|

600

Aggregate CPU %

400

i A
200 /N_«MWK\Q

0

ot . X .
“

0 200 400 600 800 1000 1200 1400

Time (seconds)

[+idsl1 princeton6 ---e-- root —«— northwestern6 —«— ucb5‘

Figure 2: Aggregate CPU usage over time for the top fi ve
dlices on PlanetLab.

small jJumps in the graph.

The magnitude of the jump is dependent on where in
the tree the route changes. Changes low in the tree are
likely to only cause an increase of one or two nodes,
while changes high in the tree can cause larger spikes.

4.3 Aggregating Slice Information

Our next query is a continuous in-network aggregation
of data retrieved from the slicestat sensor. The query
calculate the overall usage of resources (CPU, mem-
ory, send/receive bandwidth, and number of tasks) for
a particular slice over all of PlanetLab. This query was
larger than the 1200 byte limit for some nodes, so the
results are calculated from about 140 nodes.

Figure 2 shows aggregate CPU usage per slice over

all the nodes reporting information. Only the top five
slices are shown for clarity. Unfortunately this graph
shows a large amount of variance between samples.
Some of this variance is real changes in system usage,
while some of it is due to three factors described be-
low.

First, with some nodes not being able to process the
query due to the size of the query (for the above men-
tioned fragmentation problem), the network was more
unstable. We confirmed this by running a larger ver-
sion of the continuous node count query and noticed
an increased variance in the count.

Second, the same route flapping problem impacts
these numbers as well. However, a large cause for
the variance and for the slow startup time is due to
the slicestat sensor. On some heavily loaded nodes,
the sensor took over 20 seconds to report a complete
set of data. This meant we had to slow the sam-
ple rate to thirty seconds (rather than five seconds for
node count queries). This, in turn, raises questions on
how to set appropriate timeouts for large-scale aggre-
gation queries given varying node CPU loads, sensor
response times, and network congestion.

The large spikes shown for slice idsl1 demonstrates
PIER’s ability to perform continuous in-network ag-
gregation at a sufficiently high query rate to observe
this slice’s bursty CPU behavior over time. Other
slices may have been changing as well. However, we
did not investigate them specifically. This shows that
even though the numbers are not stable, the system was
performing well enough to show true changes in the
system.

4.4 Other sensors

Our final set of tests on PlanetLab were to see the ease
and flexibility of using other data sources available to
us.

Our sensor scanner is capable of processing data
from all those sensors into tuples without a priori
knowledge of the sensor or its schema. The query
specifies the port and request string as well as the type
of each field that is expected. Without any modifica-
tions to the scanner we were able to run a query over
data from Snort. Table 1 shows the top ten Snort rules
that were activated over all the nodes running the Snort
sensor.

This demonstrates the ease in which new data
sources can be queried by PIER without any changes

| Rule | RuleDescription | Hits]

1322 | BAD-TRAFFIC bad frag bits 465,770
2189 | BAD TRAFFIC IP Proto 103 (PIM) 123,558
1923 | RPC portmap proxy attempt UDP 31,491
1444 | TFTP Get 21,944
1917 | SCAN UPnP service discover attempt 17,565
1384 | MISC UPnP malformed advertisement | 14,052
1321 | BAD-TRAFFIC O ttl 10,115
1852 | WEB-MISC robots.txt access 10,094
1411 | SNMP public access udp 7,778

895 | WEB-CGI redirect access 7,277

Table 1: Thetop ten rules hit by Snort over all nodes run-
ning the Snort Sensor.

to the infrastructure. This is an important property for
any system deployed in the Internet where protocols,
applications, and data sources are constantly changing.

5 Conclusion

The work we present in this paper opens more ques-
tions than it answers. Our relatively simple queries
did not run as expected, showing that more work on
the basic algorithms is still needed.

Aggregation is a prime area for future research.
Achieving the correct value with real nodes that do not
fail is not easy. We need to answer questions such as
how to set the timeouts/refresh rates? How long should
data be cached? How do we choose the root? Do we
need adaptive algorithms to make these decisions? Are
there more efficient ways of aggregating, i.e. do we
need to send as much data each round or limit it to just
data that changes? How do we handle changing routes
without over/under counting values?

References

[1] Bamboo. Submitted for publication, 2003.

[2] R.Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo, S. Shenker,
and I. Stoica. Querying the internet with pier. In Proc. of
VLDB 2003, Sept. 2003.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A Tiny AGgregation service for ad-hoc sensor net-
works. In Proc. of OSDI 2002, Dec. 2002.

[4] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
blueprint for introducing disruptive technology into the inter-
net. In Proc. of HotNets-I, October 2002.

[51 M. Roesch. Snort — lightweight intrusion detection for net-
works. In Proc. of LISA 1999, Nov. 1999.

[6] T. Roscoe, L. Peterson, S. Karlin, and M. Wawrzoniak. A
simple common sensor interface for planetlab, March 2003.
PDN-03-010.

